SCHEME & SYLLABUS

for

M.TECH. COURSE

in

Signal Processing

(w.e.f. Session 2017-2018)

DEPARTMENT OF ELECTRONICS ENGINEERING
YMCA UNIVERSITY OF SCIENCE AND TECHNOLOGY, FARIDABAD
YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY, FARIDABAD
SCHEME OF STUDIES & EXAMINATION
M.Tech 1st year – Signal Processing

SEMESTER-I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks for Sessionals</th>
<th>Marks for End Term Examination</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E17S 601</td>
<td>Signal Theory</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>E17S 603</td>
<td>Digital Communication and Information system</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>E17S 605</td>
<td>Microprocessor and its applications</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>E17S 607</td>
<td>Digital Signal Processing</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>E17S 609</td>
<td>Numerical Techniques</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>E17S 611</td>
<td>Microprocessor Lab</td>
<td>- 2 2</td>
<td>15</td>
<td>-</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>E17S 613</td>
<td>Digital Signal Processing Lab</td>
<td>- 2 2</td>
<td>15</td>
<td>-</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20 4 24</td>
<td>155</td>
<td>375</td>
<td>600</td>
<td>24</td>
</tr>
</tbody>
</table>
SEMESTER –II

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks for Sessionals</th>
<th>Marks for End Term Examination</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E17S 602</td>
<td>Embedded Systems & Applications</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>E17S 604</td>
<td>Digital System Design</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>E17S 606</td>
<td>Advance Signal Processing</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>E17S 608</td>
<td>Analog MOS Integrated Circuits for Signal Processing</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective-I</td>
<td>4 - 4</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>E17S 612</td>
<td>Digital System Design Lab.</td>
<td>- 2 - 2</td>
<td>15</td>
<td>-</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>E17S 614</td>
<td>Advance Signal Processing Lab.</td>
<td>- 2 - 2</td>
<td>15</td>
<td>-</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20 4</td>
<td>24</td>
<td>155</td>
<td>375</td>
<td>24</td>
</tr>
</tbody>
</table>

LIST OF ELECTIVE – I

- E17S 608 A Wireless Communication
- E17S 608 B Artificial Intelligence
- E17S 608 C Optical Fiber Communication System
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks for Sessionals</th>
<th>Marks for End Term Examination</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
<td>Total</td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>E17S 701</td>
<td>General & Special Purpose Digital Signal Processors</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>E17S 703</td>
<td>Statistical signal processing</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Elective-II</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>E17S 707</td>
<td>Seminar-I</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>E17S 709</td>
<td>Minor Project</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>E17S 711</td>
<td>DSP Processors & Application Lab</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>E17S 713</td>
<td>Statistical Signal processing Lab.</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24</td>
<td>2</td>
<td>26</td>
<td>185</td>
<td>225</td>
</tr>
</tbody>
</table>

LIST OF ELECTIVE – II

- E17S 705 A Radar System Analysis and Design
- E17S 705 B Sonar Signal Processing
- E17S 705 C Digital Image Processing
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks for Sessionals</th>
<th>Marks for End Term Examination</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E17S 702</td>
<td>Dissertation</td>
<td>- 24 24 150</td>
<td>- 350</td>
<td>500</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>E17S 704</td>
<td>Seminar-II</td>
<td>- 2 2 50</td>
<td>-</td>
<td>50</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>- 26 26 200</td>
<td>350</td>
<td>550</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
SEMESTER – I

E17S 601 SIGNAL THEORY

L T P CR
4 0 0 4

Theory : 75
Class Work : 25
Total : 100
Duration of Exam : 3 Hrs.

UNIT-3 Operations on Multiple Random Variables: Expected Value of a function of Random variables, Joint Characteristic Functions, Joint Gaussian Random variables, Transformations of Multiple Random variables, Linear Transformation of Gaussian Random variables, Sampling and Estimation: Estimation of Mean, Power, and Variance

UNIT-7 Modeling of Noise Sources: Receiver Noise Sources, Effective Noise Temperature, Incremental Modeling of Noisy Networks: Available Power Gain, Effective Input Noise temperature, Spot Noise Figures, Modeling of practical Noisy Networks: Average Noise Figures, Average Noise temperatures

Reference Books:
UNIT-1 Signals & classification, Fourier series and Fourier transform, autocorrelation and cross correlation, cross correlation of energy and power signal. Rayleigh energy theorem, probability theory, Gaussian Process.

UNIT -2 Noise: Sources of noise, signal to noise ratio, noise figure, noise temperature, Sampling theorem.

UNIT -4 Digital Modulation Techniques: Introduction, ASK, PSK, FSK, MSK, QPSK, BPSK, Detection of Binary Modulation Techniques in the presence of noise, error probability in ASK, PSK, FSK

UNIT -5 Information Theory: Concept of information and Entropy, Shannon Theorm, Channel Capacity Self Information, Discrete and Continuous Entropy, Mutual and Joint information, Redundancy

UNIT -6 Coding Theory: Source encoding & Channel encoding, Error detection and Correction, Various Codes for channel coding, Rate Distortion Functions.

UNIT -7 Error Control Code: Introduction to Block coding and Optimal Decoding, Binary Hamming Code, Structure of Linear Code, Decoding of Linear Block Code, Reed Muler Code, Structure of Cyclic Code, Bose Chaudhary Hocquenghem (BCH) codes, Cyclic Hamming Code

Reference books:
UNIT -1 Microcomputer hardware: Microprocessor, architecture, system bus, memory organization, I/O, addressing modes, instruction types.

UNIT -2 Interrupts, timing and machine cycles, peripheral interfacing – DMA controller, CRT controller-8275, floppy disk interface and floppy disk controller-8272.

UNIT -3 Process control computer systems – process control languages, types of computers – main frames, minicomputers, microcomputers, performance evaluation techniques.

UNIT -4 Microprocessor and microcomputer selection :Matching processors and applications, defining the application, software requirements, memory requirements, interfaces, coprocessor, future needs and expandability, power requirements, maintenance, cost effective design.

UNIT -5 Development Tools: Development systems for micros, software tools, logic analyzer, cross assemblers, compilers, and simulators.

UNIT -6 Data Communication: Information coding, asynchronous and synchronous data communication, data communication standards – RS232C and RS485, USART, IEEE-488 GPIB.

UNIT -7 Applications: Stepper motor interface, temperature controller with an analog and digital computer using a temperature sensor, microprocessor based speed-monitoring unit of DC motor, frequency measurement.

Reference Books:
4. Bray – Intel Microprocessor 8086/8088: Architecture, Programming and interfacing, PHI.
E17S 607 DIGITAL SIGNAL PROCESSING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Theory: 75
Class Work: 25
Total: 100
Duration of Exam: 3 Hrs.

UNIT-1
Discrete time signals and systems: Introduction, discrete-time signals: sequences i.e. basic sequences and operations, discrete time systems, memory-less systems, linear time invariant systems, causality, stability properties of linear time-invariant systems, frequency-domain representation of discrete-time signals and systems.

UNIT-2
Representation of sequences by Fourier transforms. Symmetry properties and Theorems of Fourier transform, discrete-time random signals.

UNIT-3

UNIT-4
Structures of digital filters: Basic structures of Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) Filters—direct form, cascade form, parallel form, feedback in IIR system, transposed forms Design of FIR and IIR filters using all standard procedures.

UNIT-5

UNIT-6
Errors in Digital filtering: Errors resulting from rounding and truncation, round-off effects in digital filters. Finite word length effects in digital filter.

UNIT-7
Multirate Digital Signal processing (MDSP): Sampling rate conversion, multistage implementation of sampling rate conversion, application of multi rate DSP for design of phase shifters, narrow band low pass filters, Quadrature Mirror Filters, digital filter banks.

UNIT-8
Hardware implementation of DSP: Introduction to DSP processor, architecture of DSP processors.

Reference Books:
NUMERICAL TECHNIQUES

L T P CR
4 0 0 4

Duration of Exam : 3 Hrs.

UNIT-2 Gauss-Jordan methods, round off errors, I, II conditioned matrices Eigen value & Eigen vectors, Unitary, Hermittian & normal matrices.

UNIT-3 Non-linear equations-Bisection methods, Linear interpolation methods, Newton’s method, Muller’s method, Bairstow’s methods for the quadratic factors, other methods for the polynomials.

UNIT-4 Interpolation problems-Lagrangian polynomial, Divided differences, Interpolating with cubic spline, Bexier curves and B-spline curves, polynomial approximation of the surfaces, least square method.

UNIT-5 Differentiation & integration-derivatives from difference table, higher order derivatives, Extrapolation techniques, Integration formulas-Simpson’s rule, Trapezoidal rule, Gaussian uadrature, Adaptive integration, multiple integrals.

UNIT-6 Solution of ordinary differential equation – modifier Euler methods, Milne’s methods Adam’s moulton method, Convergence criteria, Errors & error propagation, Comparison of different methods.

UNIT-7 Boundary value problems:- shooting methods, Rayliegh-Ritz, collocation and Galerkin methods, characteristic value problem, Eigen values by iteration and QR method, application of Eigen values.

Reference Books:
LIST OF EXPERIMENTS

1. Familiarization with architecture and operation of single board microcomputer.

2. Performing mathematical and logical operations on a single board microcomputer.

3. Familiarization with DEBUG program and its commands to execute and debug Assembly Language Programs (ALP).

4. Write a program for a 16 bit processor to
 (a) Find the largest number in a data array.
 (b) Find the smallest number in a data array.

5. Write a program for a 16 bit processor to find the sum of a series of 16 bit numbers.

6. Write a program for speed control of DC series motor.

7. Design a microprocessor based temperature monitoring unit.

8. Write a program for a traffic light control with emergency control using Interrupts.

10. Write an ALP to generate 10 KHz square wave.

11. Write an ALP to interface Microprocessor and LCD display.

12. Write an ALP to interface one microcontroller with other using serial communication.

Note: At least ten experiments have to be performed in the semester. At least seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus.
LIST OF EXPERIMENTS USING MATLAB:

1. Write a Program for generation of unit impulse, unit step, ramp, exponential, sinusoidal and cosine sequence.
2. Write a Program for computing inverse Z-transform of a rational transfer function.
3. Write a Program for linear convolution.
4. Write a Program for plotting the frequency response of first order system.
5. Write a Program for computing Discrete Fourier Transform (DFT).
7. Design FIR Low pass filter and High pass filter using Rectangular window.
8. Transform an analog filter into a digital filter using Impulse Invariant method.
9. Design a Chebyshev Low pass filter.
11. Determine the execution time of the FFT function.
12. Demonstrate the effectiveness of high-speed convolution FFT algorithm.

Note: At least ten experiments have to be performed in the semester. At least seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus.
SEMESTER-II

E17S 602 EMBEDDED SYSTEMS & APPLICATIONS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Theory : 75
Class Work : 25
Total : 100
Duration of Exam : 3 Hrs.

UNIT-1 Introduction to embedded system, Categories of embedded systems, Hardware Architecture, CPU, Processor Architecture interrupts, CISC & RISC, Memory, I/O devices, DMA, ADC & DAC, Serial Peripheral integrate, inter – integrated circuits bus-TCP/IP protocol

UNIT-2 Software architecture, services provided by an operating system, architecture of embedded operating system, categories of embedded operating system

UNIT-3 Process of embedded system development, waterfall model, requirements engineering, Design tradeoffs, co-design, Hardware design, Software design, Implementation, Integration & Testing, Configuration Management. Managing embedded-system development projects

UNIT-4 Communication Interfaces, RS-232/UART, RS-422/485, IEEE 1394, USB, Ethernet, wireless interfaces, IEEE 802.11, Bluetooth.

UNIT-5 Representative embedded systems, Digital Thermometer, Handheld Computer, GPS Navigation System, Internet Phone, Software – defined Radio, smart cards, RF tags,

UNIT-6 Embedded operating system, features of O/S, POSIX, Difference in various O/S, Embedded NT, Windows XP Embedded and embedded Linux

Reference Books:
2. Embedded System and applications by Raj Kamal, TMS, 2002
UNIT 1
Introduction to computer aided design: Hardware Description language (HDL), VHSIC Hardware Description Language (VHDL), Data Objects, Data Types, Operators.

UNIT 2

UNIT 3
VHDL models of combinational and sequential circuits, memory implementation of Boolean function, code converter, ALU.

UNIT 4
Hardware & software firmware consideration in designing control units for arithmetic logical processors, I/O Processor with different methods of the data handling, electronics switching, process interface design.

UNIT 5
Programmable Logic Arrays (PLA) and designing with PLA, PAL, FPGA

UNIT 6
Approaches to Sequential analysis and design: State Diagram, Analysis of Sequential Synchronous circuits, Design steps for Sequential Synchronous Circuits, State Reduction, Design of output Decoders, Counters, Shift Registers and Memory.

UNIT 7
Asynchronous Finite State Machines: Scope, Asynchronous Analysis, Design of Asynchronous Machines, Cycles and Races, Plotting and Reading the Excitation Map, ssential Hazards Map Entered Variable (MEV), MEV approaches to Asynchronous Design.

Reference Books:
UNIT 1
Digital Filter Structures: FIR digital filter structures; Direct form, Cascade form, Frequency Sampling structures, Lattice structure, IIR digital filter structure; Direct form, Cascade realization, Parallel realization, Lattice-Ladder filter structure.

UNIT 2
Design of FIR filters: Concept of Linear Phase, Design of Linear Phase FIR filters using Windows, Design of FIR filter using Frequency sampling methods, Design of FIR differentiators.

UNIT 3

UNIT 4
Quantization of Filter Coefficients: Coefficient quantization effects in FIR and IIR filters, Round-off effects in digital filters, Statistical characterization of quantization effects.

UNIT 5

UNIT 6
Multirate Digital Signal Processing: Decimation by a factor D, Interpolation by a factor I, Sampling Rate conversion by a rational factor I/D, Multistage Implementation of Sampling Rate conversion, Sampling Rate conversion by an arbitrary factor; First Order approximation, Second Order approximation

Reference Books:
UNIT 1 Overview of MOS technology, analog signal processing, basic MOS semiconductor
fabrication process -PN junction, resistor, capacitor.

UNIT 2 Use of Device models in circuit analysis: MOS models, Bipolar models, monolithic
resistors and capacitors.

UNIT 3 Analog CMOS sub circuit: MOS switch, CMOS current source, current mirrors - Wilson,
cascade.

UNIT 4 Digital to analog and Analog to digital conversion: Medium speed, High speed.

UNIT 5 Switched capacitor circuit, switch capacitor amplifier, switched capacitor Integrator, Z
domain or first order and second order switched capacitor circuit.

UNIT 6 Non-filtering applications of switched capacitor circuits; gain stage, programmable capacitor
arrays, switched-capacitor rectifiers, detectors, oscillators, application in signal processing.

Reference Books:
ELECTIVE-I

E17S 608A WIRELESS COMMUNICATION

L T P CR
4 0 0 4

Theory : 75
Class Work : 25
Total : 100
Duration of Exam : 3 Hrs.

UNIT-1 Introduction to wireless communication system, various generation wireless networks, cellular concepts, interface and system capacity, trunking and grade of service improving converge and capacity in cellular system.

UNIT-2 Fading and mobile characteristics representation, small scale fading, frequency selective fading, fading effect due to Doppler spread, coherence BW and coherence time, Rayleigh fading distribution, Ricean fading, Nakagami distribution, level crossing.

UNIT-3 Diversity, coding and equalization

UNIT-4 Modulation techniques for mobile radio, pulse shaping techniques, linear modulation techniques, constant envelope modulation, spread spectrum modulation techniques, rake receiver.

UNIT-5 Multiple Access (MA) techniques for wireless communication; FDMA, TDMA, CDMA, spectral effect of multiple access Schemes.

UNIT-6 GSM services and features, Architecture, frame structure, GSM channel, signal processing in GSM.

UNIT-7 Design parameters at base and mobile unit, Antenna configurations, Noise, power and field strength.

Reference Books:
UNIT 1 **Predicate Calculus in AI:** Introduction, the Propositional calculus, The Predicate calculus, Expressions using interference Rules, knowledge representation through predicate calculus.

UNIT-2 **Structures And Strategies for State Space Search:** Introduction, Graph, Theory, Strategies for State Space Search, Heuristic Search, Algorithms for Heuristic Search, Admissibility, Monotonicity and Informedness, Game Playing (minimax) using Heuristic, Back Tracking Strategies, Graph Search Strategies, Heuristic Graph Search.

UNIT-3 **Control Strategies of State Space Search:** Introduction, Recursion-Based Search, Pattern-Directed Search Production Systems.

UNIT-4 **Knowledge Representation:** Issues in Knowledge Representation, A Brief illustration of AI Representational systems, Knowledge representation using Predicate logic, Semantics Net, Concept of Frames, Meta knowledge.

UNIT-5 **Rule Based Systems:** A forward deduction system, backward deduction system, combination of forward and backward system, Control Knowledge for Rule Based Deduction Systems.

UNIT-6 **Artificial Neural Networks:** Introduction, different learning laws and architectures, learning through error back propagation, Radial Basis function, Neural computing model – Hopfield net, Boltzman Machine.

UNIT-7 **Uncertainty Handling:** Bayesian networks, Dempster-Shafer theory, certainty factors, introduction to Fuzzy Logic.

UNIT-8 **Expert Systems:** Introduction, Architecture of expert system, knowledge acquisition and representation methods in expert systems, few applications of expert systems. **Prolog Programming:** An introduction and brief overview of the language.

Reference Books
4. “Artificial Intelligence”: by S.V. Kataipoulos
6. “Introduction to ANN” by Jack., M. Zwadu
E17S 608C OPTICAL FIBER COMMUNICATION SYSTEMS

L T P CR Theory : 75
4 0 0 4 Class Work : 25
 Total : 100
 Duration of Exam : 3 Hrs.

UNIT 1 Overview of Optical Communication Systems.
UNIT 3 Propagation of light in Fibers: Concepts of modes and single mode fibers, Dispersion and attenuation in Fibers, Comparison of different types of Fibers and optical choice of Fibers.
UNIT 4 Optical Wave Guide: Planar Conducting waveguides, planar dielectric wave guides, optical fiber wave guides
UNIT 5 Optical Sources and transmitters: LED, semiconductor lasers and their characteristics
UNIT-6 Optical detectors and receivers: Photo detectors and their characteristics, receiver design, noise and sensitivity issues.
UNIT-7 System Design: Selection of detectors based on speed, sensitivity and signal to noise ratio, determination of crucial parameters for basic optical devices, translate design requirement into system parameters, optical link design, power and noise budget, jitter / rise time budget.

Reference Books:
1. Write VHDL code for 3 to 8 priority encoder.
2. Write structural code for 16:1 multiplexer.
3. Write VHDL code of full adder using two half adder.
4. Write VHDL code of BCD to 7 segment code converter using Data Style of modeling.
5. Design a three bit up/down counter using T flip flop.
6. Design a four bit synchronous counter with parallel load using T and D flip flops.
7. Write Behavioral VHDL code for module-12 up counter with synchronous reset.
8. Write VHDL Code for left to right shift registers with enable pin.
9. Create an entity that represents 3 to 8 binary encoder using two instances of 2 to 4 entity.
10. Design four bit comparator using Behavioral and Structural type of modeling.
11. Design an ALU capable of performing arithmetic and logical operations.
12. Design a module-6 counter which counts in the sequence 0,1,2,3,4,5,0,1, the counter counts the clock pulse if its enable pin is equal to 1

Note: At least ten experiments have to be performed in the semester. At least seven experiments should be performed form the above list. Remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus.
LIST OF EXPERIMENTS USING MATLAB

1. Implement a Cascade and Parallel form realization of IIR Filter and write a MATLAB Program to convert Cascade and Parallel form to direct form.

2. Write a MATLAB program that converts a direct form FIR filter structure to Frequency Sampling form FIR.

3. Implement a Lattice/Ladder IIR filter using MATLAB.

4. Implement a Lattice form realization of FIR filter.

5. Simulate the effect of coefficient quantization on the frequency response of a direct form IIR digital filter.

7. Calculate output noise variance due to input quantization of a digital filter (Partial – Fraction Approach)

11. Write a MATLAB program to generate a discrete time equivalent of the signal. Interpolate the discrete time signal and Decimate the output of interpolator.

12. Operation of a Sigma-Delta A/D converter for a sinusoidal input using MATLAB.

Note: At least ten experiments have to be performed in the semester. At least seven experiments should be performed from the above list. Remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus.
SEMESTER – III

E17S 701 GENERAL AND SPECIAL PURPOSE DIGITAL SIGNAL PROCESSORS

L T P CR
4 0 0 4

Theory : 75
Class Work : 25
Total : 100
Duration of Exam : 3 Hrs.

UNIT 1 Introduction, computer architectures for signal processing, Harvard Architecture, pipelining.

UNIT 2 Hardware multiplier accumulator, special instructions, Replication, on chip memory/cache, extended parallelism – SIMD, VLIW and static superscalar processing.

UNIT 3 General purpose digital signal processors – fixed point DSP’s, Architecture of first generation fixed point DSP processors, Architecture of second generation fixed point DSP’s, Architecture of third generation fixed point DSP’s, Architecture of fourth generation fixed point processors, floating point digital signal processors.

UNIT 4 Selecting digital signal processors – architectural features, execution speed, type of arithmetic, word length, support for development tools, packaging of a DSP, Clock frequency and MIPS rating.

UNIT 5 Implementation of DSP algorithms on general purpose DSP’s – FIR digital filtering, IIR digital filtering, FFT processing, multirate processing.

UNIT 6 Special purpose DSP hardware – Basic requirements of special purpose DSP’s, hardware digital filters, hardware FFT processors, architecture of hardware FFT processors, double buffering in real time FFT.

Reference books:
4. Digital Signal Processor Applications with Motorola’s DSP 56002, Mohammed EL. Sharkawy
UNIT-1 Digital Filter design using least-square method: Least Square error criterion in the design of Pole-zero filters, FIR least squares inverse filters.

UNIT-2 Spectral Estimation and Analysis - Non parametric methods: Periodogram, Bartlett and Welch modified periodogram, Blackman-Tukey Methods.

UNIT-5 Wiener Filters for Filtering and Prediction: FIR wiener filter, Orthogonality principle in the Linear Mean-square error (MSE) estimation, IIR Wiener Filter.

UNIT-6 Adaptive Algorithms to adjust coefficients of digital filters: Least Mean Square (LMS), Recursive Least Square (RLS) and Kalman Filter Algorithms.

Reference Books:
ELECTIVE-II

E17S 705A RADAR SYSTEM ANALYSIS & DESIGN

L T P CR
4 0 0 4

Theory : 75
Class Work : 25
Total : 100
Duration of Exam : 3 Hrs.

UNIT-1 Radar fundamentals : Radar Classifications, Range, Range Resolution, Doppler Frequency Coherence, Radar Equation, Low Pulse Repetition frequency (PRF) Radar Equation, High PRF Radar Equation, Surveillance Radar Equation, Radar Losses, Noise Figure

UNIT-2 Signal Processing, Discrete Power Spectrum, Windowing Techniques

UNIT-3 Continuous Wave (CW) and Pulsed Radars: Functional Block Diagram, CW Radar Equation, Frequency Modulation (FM), Linear FM CW Radar Pulsed Radar, Range & Doppler Ambiguitues, Resolving Range Ambiguities, Resolving Doppler Ambiguities.

UNIT-7 Radar Antennas: Directivity, Power Gain, Effective aperture, Near and Far Fields, General Arrays, Linear Arrays, Planer Arrays, Array Scan Loss, Conventional Beam Forming

UNIT-8 Radar Cross Section (RCS): RCS definition, Dependency on Aspect Angle and Frequency RCS Dependence on Polarization, RCS of Simple objects, Simplistic Approach to calculating the RCS of Complex objects

Reference Books:
E17S 705B SONAR SIGNAL PROCESSING

<table>
<thead>
<tr>
<th>L T P CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 0 0 4</td>
</tr>
</tbody>
</table>

| | |
|----------|
| Theory | 75 |
| Class Work | 25 |
| Total | 100 |

Duration of Exam: 3 Hrs.

UNIT 1 Overview of sonar systems
UNIT 2 Sonar Basics: Propagation of sound in the ocean, noise in the ocean.
UNIT 3 Analysis of Sonar Signals: The sonar equation, signal/noise considerations, Generation of underwater sound, Nonlinear effect of depth
UNIT 4 Detection of Sonar signals: Threshold concept, Various types of detector, Typical problems in detection of sonar signals, Adaptive digital filters, Digital Doppler nullification
UNIT 5 Sonar Array Processing: Conventional beamforming, Adaptive beamforming, Beam Steering
UNIT 6 Sonar Systems Design Implementation: Passive sonar design consideration, Active sonar design consideration

Reference Books:
E17S 705C DIGITAL IMAGE PROCESSING

L T P CR Theory : 75
4 0 0 4 Class Work : 25
 Total : 100
 Duration of Exam : 3 Hrs.

UNIT-2 Digital Image Fundamentals: Visual Perception, simple image models, concept of uniform and nonuniform sampling and quantization, Relationships between pixels-neighbors of pixel, connectivity labeling of connected components, Relations, equivalence and Transitive closure, Distance measures, Arithmetic/Logic operation, Imaging geometry Basic and perspective transformation stereo imaging.

UNIT-4 Image Enhancement: Spatial and frequency domain methods point processing, intensity transformation, Histogram processing image substation and Averaging spatial filtering, LP, HP and homo-morphic felling, generation of spatial marks, Color image processing.

UNIT-5 Image Restoration: Degradation model, digitalization of circulate and block circulate metrics, Algebraic approved invoice filtering, wiener filter, constrained least square restoration, Interactive restoration in spatial domain geometric transformation.

UNIT-6 Image Compression: Redundancy models, error free compression, Lossy compression, Image compression standards.

UNIT-7 Image Segmentation: Detection of Discontinuity, Edge detection, Boundary detection, Thresholding, Regional oriented segmentation use of motion in segmentation.

UNIT-8 Representation and Description: Image analysis, Pattern and their classes, Decision theoretical methods, Structural methods, Interpretation.

Reference Books:
E17S 707 SEMINAR-I

L T P CR
0 0 2 2

Theory : 35
Class Work : 15
Total : 50
Duration of Exam : 3 Hrs.

The student has to undertake extensive literature survey on a topic with the approval of the Supervisor appointed by Head of The Department for this purpose.

Extensive search of print, audio, video materials, internet surfing is to be carried out by the student. He/She has to give a seminar on his/her work. Evaluation will be based on continuous monitoring of his/her work during the semester, by his/her supervisor and the report on seminar evaluation by committee appointed by the Head of the Department.
Every student will carry out dissertation under the supervision of a Supervisor(s). The topic shall be approved by a committee constituted by the Head of the department.

Every student will be required to give two seminars, first at the beginning of dissertation (Phase-I) to present the scope of the work and to finalize the topic, and second toward the end of the semester, presenting the work carried out by him/her during the semester. The committee will screen both the presentation so as to award the sessional grades.
E17S 711 DSP PROCESSORS AND APPLICATION LAB

L T P CR Theory : 35
 Class Work : 15
 Total : 50
 Duration of Exam : 3 Hrs.

EXPT. 1 Familiarization with the architecture and operation of first generation fixed point DSP Texas Instruments TMS320C10.
EXPT. 2 Familiarization with the architecture and operation of second generation fixed point DSP Texas Instruments TMS320C50.
EXPT. 3 Familiarization with the architecture and operation of third generation fixed point DSP Texas Instruments TMS320C54x.
EXPT. 4 Familiarization with the architecture and operation of fourth generation fixed point DSP Texas Instruments TMS320C62x
EXPT. 5 Write an assembly language program for TMS320C10 based FIR digital notch filter.
EXPT. 6 Write an assembly language program for TMS320C10 based FIR digital band pass filter.
EXPT. 7 Write an assembly language program for TMS 320C25 based FIR digital notch filter.

Note: Each experiment has to be performed and these are very challenging and difficult experiments, so we limited to seven experiment.
E17S 713 STATISTICAL SIGNAL PROCESSING LAB

L T P CR Theory : 35
0 0 2 2 Class Work : 15
 Total : 50
 Duration of Exam : 3 Hrs.

LIST OF EXPERIMENTS USING MATLAB

1. Using MATLAB find the signal energy or power of the signals.
2. Plot correlograms in MATLAB.
3. Periodogram of a signal containing two Sinusoidal components corrupted with White noise using MATLAB.

Note: Each experiment has to be performed and these are very challenging and difficult experiments, so we limited to six experiment.
SEMESTER – IV

E17S 702 DISSENTATION

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Theory : 35
Class Work : 15
Total : 50
Duration of Exam : 3 Hrs.

The dissertation Phase-I will be continued as dissertation in IV semester.

At the end of the semester every student will be required to submit three copies of his/her Master Dissertation to the office of the ECE-department. Out of these one copy will be kept for department records and one copy shall be for the supervisor. Third copy of the Dissertation will be sent to the external examiner by mail by the department upon receipt of intimation of the examiner from the YMCAUST. Dissertation will be evaluated by a committee consisting of Head of the Department, Dissertation supervisor and one external examiner.

The external examiner shall be appointed by the University from a panel of examiners submitted by the respective Head of the Department to the Chairman, Board of Studies (B.O.S.). In case the external examiner so appointed by the University does not respond to the offer, the Chairman, B.O.S. may be empowered to appoint the next external examiner from the panel of examiners already submitted.

The student will defend his/her Dissertation before this committee and the committee will award one of the grades.
The student has to undertake extensive literature survey on a topic with the approval of the Supervisor appointed by Head of The Department for this purpose.

Extensive search of print, audio, video materials, internet surfing is to be carried out by the student. He/She has to give a seminar on his/her work. Evaluation will be based on continuous monitoring of his/her work during the semester, by his/her supervisor and the report on seminar evaluation by committee appointed by the Head of the Department.

Committee will award the sessional grades.